Beating the System: The Private
Life Of A WinHelp File (Part 3)

by Dave Jewell

Last month we covered data
compression in Windows help
files and added a number of addi-
tional utility routines to the
HELPINFO unit. Up until now, we’'ve
only really examined the |SYSTEM
subfile. This month, we’re going to
look principally at the phrase infor-
mation contained in a typical help
file. This month’s disk includes a
program, HELPDECO, which can
access the information inside.

In last month’s explanation of
data compression, | described how
the Microsoft compression algo-
rithm searches a ‘sliding window’
for sequences of bytes that it’s
already seen. If it finds any, then it
simply adds a reference to the pre-
vious byte sequence by adding a
length/distance pair to the output
data stream. What might surprise
you is that this compression tech-
nique is replicated within the help
system through a higher-level
mechanism that searches for indi-
vidual phrases within the help text
being compiled. These two mecha-
nisms, a high-level text oriented
scheme and the low-level byte ori-
ented compression, together allow
the compiler to create the smallest
possible help files.

To see how this works, imagine
that the help text contains:

“In order to export a document
from Super-Wombat, you should first
open the document, and then select
Export from the File menu.”

In this imaginary fragment of
help text, the word “document” ap-
pears twice: a fact that will cer-
tainly be noticed by the compiler.
This process isn’t restricted to sin-
gle words, the compiler will try to
find long phrases of many words
because, naturally, the more words
in a phrase, the greater the benefit
in terms of help file size reduction.
Some phrases can be several sen-
tences long if the author has ‘cut
and pasted’ material when creating

44

the help file. However, a phrase is
limited to 512 bytes in size.

With this in mind, you should
begin to appreciate why it is that
the help file compiler is so painfully
slow! This process of detecting du-
plicate phrases is potentially one
of the most time-consuming as-
pects of the compilation process.
Bear in mind that the compiler
must, at all times, have access to
the entire help text in order to per-
form phrase de-duplication and
with some help files, the amount of
text involved can be enormous:
think about the MSDN CD!

As duplicate phrases are de-
tected, they are removed from the
help text and replaced by a phrase
reference. The duplicate phrase is
then added to a subfile of phrases
which is constructed during the
compilation process. The phrase
reference is essentially an index
into this subfile of phrases. Under
early versions of the help compiler,
the phrases subfile was given the
name |Phrases (remember that sys-
tem-level subfiles are always pre-
ceded by a | character). Later
versions of the help compiler store
the phrases in a subfile called
|PhrImage and place phrase index-
ing information in a file called
|Phrindex. If the help file is very
small or no duplicate phrases are
found the compiler doesn’t bother
to create phrase file information.

The phrase file information is
compressed using the same data
compression algorithm that we
discussed last time and of course
the phrase data is itself com-
pressed in the same way. From all
this, you can see that a lot of extra
complexity is added through the
requirement to make the help file
as small as possible.

Here Be Dragons

Although this might seem rela-
tively straightforward, there are a

The Delphi Magazine

number of other considerations
associated with phrase data. Like
other aspects of the help file,
things have sometimes changed
from one release of the compiler to
the next. Back in the days of
Windows 3.0, the Mark 1 format of
the |Phrases file looked like this:

type
PHRASEHDR = record
PhraseCount: Integer;
Phrase256: Integer;
end;

The first field specifies the number
of phrases in the file. This is imme-
diately followed by Phrase256
which always has a value of $100.
Immediately after the header,
there is an array of 16-bit words,
PhraseCount+l of them to be pre-
cise. These words are offsets into
the phrase data itself, which fol-
lows the list of offsets. Each phrase
string is stored without any separa-
tor information: there are no C-
style nulls after each string, nor are
there any Pascal-style length bytes
ahead of each string. The text of
one string is immediately followed
by the next. In order to determine
the length of a particular phrase,
you need to compare its offset with
the offset of the next string: the
length of phrase N is the offset of
phrase N+1 minus the offset of
phrase N.

This, of course, is the reason that
there is one more offset in the off-
set array than there are phrases:
we need to be able to determine the
size of the final phrase!

Under Windows 3.0, none of the
above is compressed: the 3.0 ver-
sion of the compiler never com-
presses the |Phrases subfile.
However, under Windows 3.1, the
|Phrases subfile is always com-
pressed, irrespective of whether or
not compression is applied to the
entire help file. In order to cater for

Issue 14

Format - 3% Floppy (A:) 2 x|

Capacity:

[1.44Mb (35 =l Start
-~ Format type -
© Quick [erase)
& Eull
" Copy spstem files only
i~ Other option:
Label:
IEasyPEasy
[~ Mo label
¥ D iary when finished
i e

O Figure 1

this, an extra field appears in the
Mark 2 PHRASEHDR record. This field,
PhraseSize, is a 32-bit long integer
which fits between the Phrase256
field and the start of the array of
offsets. PhraseSize gives the total
size of all the phrases after decom-
pression; it’s useful for allocating a
buffer into which the phrases will
be decompressed.

Still with me? That’s not the end
of the story by any means. Early
versions of the compiler (up to and
including Windows 3.1) were lim-
ited to a maximum of $700 (1792)
phrases. At some point Microsoft
removed this limit and they there-
fore had to revise the PHRASEHDR
structure yet again. The new Mark
3 structure looked like this:

type

PHRASEHDR = record
Phrase2048: Integer;
PhraseCount: Integer;
Phrase256: Integer;
PhraseSize: LonglInt;
Phrasedunk:

array [0..29] of Byte;
end;

In this version of the header the
first field, Phrase2048, always has
the value of $800. An old version of
the Windows help engine would in-
terpret this as a value of $800 for
the PhraseCount, which would be
interpreted as excessive and the
help file would be rejected. More
recent help file readers will recog-
nise $800 as the signature of a Mark
3 header and get the real phrase
count from the next field. For some
reason, this version of the |Phrases
subfile also sets aside 30 bytes of

October 1996

A Disk Formatting Postscript

Many of you will remember the disk formatting code | developed some
months back. This code was intended specifically to allow 16-bit Pascal
applications to format floppy disks under Windows 3.1, Windows 95
and NT. If you're writing a 32-bit application, there are ways of format-
ting disks directly, but the necessary code is somewhat messy.

In time honoured-fashion, Microsoft developed a simple, easy to use
disk formatting API call — but they forgot to tell anyone else about it.
The routine is called SHFormatDrive and as far as | know, it isn’t men-
tioned in any official documentation. You may remember that |
mentioned this routine some time ago but at the time | confessed that
| didn’t know how to drive it. Well, Wilbert van Leijen (101573,3345 on
CompusServe) has done the necessary spade-work and discovered how
to drive this routine. Many thanks to Wilbert.

Here’s what the function prototype would look like in Pascal:

function SHFormatDrive(
Wnd : HWnd; Drive, Size, Options: Integer): Integer;

The first parameter is a window handle which is used as the parent
window for any dialogs and message boxes which might need to be
invoked by the routine. The second parameter specifies the drive to
format. This is interpreted as A=0, B=1, C=2, etc. Incidentally, you need
to take care with this routine because Wilbert reckons that it can be
used to format a hard disk! Needless to say, | didn’t test out his
hypothesis — take care.

The next parameter, Size, is used to specify a size for formatting the
drive. The value of this will depend on the type of floppy disk you're
formatting: for a 1.44Mb drive, a value of 5 will produce a 720Kb disk
whereas 6 corresponds to a 1.44Mb disk. A value of zero corresponds
to the “default” value for the drive. Finally, the Options parameter
determines the type of formatting that takes place: zero indicates a
quick format, 1 specifies a full format, while 2 simply copies the system
files to the designated floppy disk (this is equivalent to using the DOS
SYS command).

With the exception of the Drive parameter, the various parameters
need to be taken with a pinch of salt: they are really initial values which
can subsequently be altered by the user. When you call SHFormatDrive,
the dialog box shown in Figure 1 appears, complete with the various
options you’ve selected. The user is free to change the initial values and
type in an optional volume label before hitting the fateful Start button.

On the negative side, the SHFormatDrive call is presently only available
under Windows 95, it may or may not be implemented in the release
version of NT 4.0 which (at the time of writing) is expected to land on
my doormat very soon. The ridiculously short program below (which
| compiled with Borland Pascal 7.0) will perform a full format of your
floppy drive A: and you could easily incorporate this code into a Delphi
application if you so wished. The code isincluded on this month’s cover
disk along with the executable file: a mere 1,536 bytes in size!

program FormDemo;

uses
WinTypes, WinProcs;

function SHFormatDrive(Wnd: hWnd; Drive, Size, Options:
Integer): Integer; far; external °SHELL’;

{ Full format of drive A }

begin
SHFormatDrive (0, 0, 0, 0);

end.

The Delphi Magazine 45

unused space before the phrase

offset information; presumably
this was reserved for future
expansion.

Things become progressively
more complex when we move to
Windows 95. At this point,
Microsoft decided to separate out
the phrase offsets from the phrase
data itself. As mentioned pre-
viously, two subfiles are now in-
volved: |PhrIndex and |PhrImage.
The |PhrImage file simply contains
the phrase data as before, with no
intervening characters between
each phrase. This file is typically
compressed. But doesn’t have to
be: you can find out by looking at
the other file, |PhrIndex. The Mark
4 version of the header is shown
below:

type

PHRASEHDR = record
Unknownl: LongInt;
PhraseCount: LongInt;
CompressedSize: LongInt;
PImageSize: LongInt;
CompPImageSize: LongInt;
AlwaysZero: LonglInt;
BitFlags: Word;
Unknown2: Word;

end;

The first field, Unknownl, typically
has the value $4A01 but can some-
times be $0001. Its precise meaning
is unknown, but it's not needed to
extract phrase information from
the help file. The next value,
PhraseCount, stores the total
number of phrases as before
(notice that this is now a long
value). The CompressedSize field
simply stores the size of the
|[Phrindex file itself while
PImageSize and CompPImageSize con-
tain the uncompressed and com-
pressed sizes of the phrase data
found in the |PhrImage file. If these
two fields differ in size, then you
canassume that |PhrImage isacom-
pressed file. The Alwayszero field is
(as the name suggests) always zero
and can be ignored.

Just to make things a little more
interesting, Microsoft used an-
other compression scheme to com-
press the phrase index information
in the |PhriIndex file. Compression
scheme is perhaps not the right

46

EeE]
Eis Edi Yuw Tacle Halp
| M1 Filikes |Canbems of Thuser
Ll jwa | 1
Ll prare -Pﬁ‘ 2 Fila Froddm
3 warw _ Emploe Fis Fodded
4[] Hslice £ Cpen Film Frdden
1) rulipad i e Fis Fokdes
e B ez | e
o L3 Fils Fiokdes
: j ::‘ml __El‘“r“ L | Fila Foidat
-7 Progaers Filaz = :::ﬂ
il a Soy B EDFe
1B R I et et ME WRHELPESE
il Aaplps B XE Conkparskon Gt
%l Rucpcled 1| Deieia BB TustDacursen
) Aeplcs Farngge
5 53 s Y| Ppesitynyy s e—— 2
dudal T s eleotend Dewe o w0 wekive o

0 Figure 2: Programs like WinZIP add their own custom context menu
items to the Windows 95 Explorer. Look at the highlighted Add to
ZIP menu item shown here. Next month, I'll show you how...

word: it’s just a clever hack that’s
used to reduce the size of the offset
data. When the compiler builds the
help file, it determines the mini-
mum number of bits required to
hold a phrase offset and all offsets
are stored only in that number of
bits. Interestingly, a phrase offset
still ends up as only a 16-bit offset
(just as in earlier versions of the
help file) which presumably means
that there are some real restric-
tions on the maximum number of
phrases that can be stored: no
more than 64Kb of data in total.
This strikes me as something of an
anachronism.

The lower four bits of the Bit-
Flags field determine the bit count
used to decode each phrase offset.
If you want to see, in detail, how
this works, look at the HELPDECO
source code. This brings me onto...

Introducing HELPDECO

This month I've decided to cheat! |
recently came across a public do-
main help file disassembler which
is far more complete than anything
| could do in the time available, so
I've included this on the disk rather
than create my own source code
for taking apart help files. The only
bad news is that it's written in C,
6,500 lines of C to be precise, the
good new is that a compiled ver-
sion is included too. There’s a few
other helpful goodies on this
month’sdisk as well, such as avery
detailed description of the inter-
nals of a Windows help file. The

The Delphi Magazine

HELPDECO program itself can be
used to poke around inside a help
file and can reconstitute the vari-
ous components of a help file into
a form ready for subsequent modi-
fication and recompilation using
one of the standard Windows Help
file compilers. The author of this
software, a German developer
called M Winterhoff, should be
sincerely thanked for putting this
fascinating code into the public
domain and especially for making
the source code available.

Next Time

In next month’s column I’'ll be dem-
onstrating how to use Delphi to ex-
tend the functionality of the
Windows 95 Explorer through the
use of context menus. If you have a
copy of the excellent WinZip share-
ware program, you’ll know that it
uses context menus to provide
access to new functionality from
inside the Explorer (see Figure 2).
Next month, we’ll be seeing exactly
how you can do this from inside
your own programs.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of “Instant Delphi
Programming” published by Wrox
Press. You can contact Dave as
DaveJewell@msn.com, DSJew-
ell@aol.com or 102354,1572 on
CompusServe.

Issue 14

	Here Be Dragons
	A Disk Formatting Postscript
	Introducing HELPDECO
	Next Time

